ADVANTAGES OF THE DILATOMETER INVESTIGATION
OF THE HEAT-TRANSFER COEFFICIENT OF A
DIELECTRIC LAYER

V. S. Batalov UDC 536.2,023

A dilatometer method for the comparative determination of the heat-transfer coefficient
of dielectrics which is fast, accurate, and simple is described.

When using rapid dilatometry to determine such important thermal characteristics as the heat-transfer
coefficient k of a dielectric layer, the method not only possesses high accuracy, simplicity of the apparatus
design, and the possibility of recording the kinetic characteristics of the thermal expansion of the objects being
investigated in arbitrary scale units [1, 3], but also, which is no less important, the complete absence of the
need to measure the temperature or the thermal fluxes in these specimens [4] and, to an equal extent, of the
layer thickness h (on which, like the thermal conductivity of the material of the layer X, depends the quantity
k =A/h [5]). This fact is particularly convenient when studying free-flowing and paste-like materials.

One of the fundamental theoretical assumptions which makes dilatometry attractive for the "nontemper-
ature" determination of the coefficient k of a dielectric layer is the behavior of the comparative thermal ex~
pansion of two semiinfinite prismatic bodies with a common initial constant temperature T;, Heating (or cool-
ing) of the specimens occurs due to sudden simultaneous contact of their fixed bases with a heat carrier (&
coolant) at a fixed temperature T, for a heat-exchange factor which is the same for both ends, ensuring uni-
form heat transfer in both specimens, the side surface of which is heat insulated, and one is justified using
the laws of heat transfer in a uniform infinite half-space.

It is easy to see that the same behavior also holds for bodies in the initial stage of the propagation of a
thermal disturbance in objects of finite size when the opposite heated end has an initial temperature T, [6].
The velocity of motion of this end W is proportional to the thermal expansion coefficient 8, its thermal diffu-
sivity @, and the gradient (8T/0x)(0, t) at the heated end [6];

W = af ‘;—z(o, ). @

The temperature gradient at the fixed end (8T/6x) (0, t) immediately after contact with the thermal
carrier flow depends on the parameters a, A, and o [7]:

orT o . Ej_ N A2
a—x(O, t):T(Tg—T,)exp()M2 az‘)[l (p(\}'Vat)}, (2)

where ¢(z) immediately after contact with the thermal carrier flow depends on the parameters z =(a/A)Vat .

It is easy to show that the rate of expansion W, when { = 0 (at the initial instants of the process) is inde-
pendent of the time t:

W, =ap (T, —T)) % (3)

If one of the specimens (the characteristics of which are exactly the same as the characteristics of a
standard cylinder) is placed in the same part of the channel for the flow of heat carrier, but the heated end of
which is separated from the heat carrier by the plane-parallel layer being investigated, the rate of expansion
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of this cylinder at the initial instants of the process W, will differ analytically from Eq. (3) by a factor which
contains, instead of the coefficient o, a certain effective parameter oy:

WI = °‘1ﬁ (Tz - T1) ‘% . 4)

The value of the effective heat-transfer coefficient o is determined, following the well-known rule for
the addition of thermal resistances [5], in terms of the required characteristic of the layer k and the heat-
transfer coefficient a:

1 1 1
—_—— 5
oy k+a ©)

Substituting the value of o; from Eq. (5) into Eq. (4) and dividing the equation obtained by Eq. (3), we have

W, k

W, a-t+k ' ®

It will be convenient henceforth to eliminate the heat-transfer coefficient &. To do this we express the
velocity (1) in terms of the gradient (2) and integrate it with respect to time over the expansion Al (t):
. . ) _ —
ML) = B(Ty—Ty) [ exp (—“-af){l g (iy_/at)]— 142 *yal. e
o \ A? h noA

It is easy to show by direct substitution that the expression in square‘brackets of Eq. (7) for a value of
the argument z; given by

has a value of 0.57, and then, taking into account property (3), the expansion of the standard specimen Al
from the time when the process starts up to the instant t;, calculated from Eq. (8), reaches the values

2
Al = AL(h) = 0.57Wy—— . 9)
ac.
Multiplying the numerator and denominator of the fraction in Eq. (9) by the time factor t, and bearing
in mind Eq. (8), we obtain

Al = 0,57 Wty. : 10)

By solving Eq. (10) graphically it is easy to find the point t; at which the expansion Al, satisfies condi~
tion (10). However, in practice, finding the instant t; is considerably simplified by the obvious fact that the
ratio Al,/t; is nothing more than the slope of the section of line which connects the origin of coordinates and
the experimental curve of the expansion Al (t) of the standard cylinder without the layer being investigated (see
Fig. 1). Consequently, if by definition the velocity W, is the slope of the curve Al () at the origin of coordi-
nates (see the figure), then, by choosing, using condition (10), the point B on the section AC such that the length

1396



of BC is 57% of the value of AC, it is extremely simple to find the required value of the expansion Al (and
the point t;) by connecting the point B to the origin of coordinates and then extending the section OB until it
intersects the curve Al (t) at the point D.

The value of t; obtained in this way and a number of elementary calculations, related to changing from
the heat-transfer parameters A and a to the coefficient g = A/Va [5], enable us to express the parameter in
Eq. (8) in terms of the well-known quantities g and t,:

o= lft_. (11)
1

From Egs. (6) and (11) we obtain an equation for calculating the heat-transfer coefficient k of the plane-
parallel layer in guestion:

117
k = —____;___. (12)
SV EW,—w)

The fairly small error in recording the time section t;, not exceeding 0.2%, and also the high accuracy
of the data on the parameter g (up to 0.5% in the handbook literature) for a small relative error in measuring
the characteristics W, and W, (not greater than 1.5% each) ensure good accuracy of the method, reaching 2-3%.

The possibility of reducing the length of the section t; [by increasing the parameter ¢ in Eq. (11)} en~
sures that the thermal action on the material will be of short duration, which is particularly convenient when
studying heat-labile materials (which lose their chemical stability when the temperature is raised).

The "nontemperature” measurement by the dilatometer express method described above for determining
the heat-transfer coefficient of dielectric materials was checked using glycerin in the temperature range 90-
100°C on the apparatus described previously [8]. The medium being investigated filled an end disk cavity in a
cylinder of stainless steel (the disk cavity of thickness 1 mm was coaxial with the cylinder).

The thermal expansion of the cylinder with the glycerin was compared with the kinetic features of the
thermal deformation of a continuous cylinder made of the same brand of stainless steel.

The value of the heat-transfer coefficient of the plane-parallel layer of glycerin of thickness 1 mm was
6.4-1073 cal/cm?* sec-deg, which is in good agreement with existing data [9].

NOTATION

a, thermal diffusivity; A, thermal conductivity; a, outer heat-transfer coefficient; t, time; k, inner
heat~transfer coefficient; 8, thermal expansion coefficient; V, volume; T, temperature.
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